skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Active nitrogen partitioning and the nighttime formation of N sub 2 O sub 5 in the stratosphere: Simultaneous in situ measurements of NO, NO sub 2 , HNO sub 3 , O sub 3 , and N sub 2 O using the BLISS diode laser spectrometer

Journal Article · · Journal of Geophysical Research; (USA)
OSTI ID:6061710
;  [1]; ;  [2]
  1. California Institute of Technology, Pasadena (USA)
  2. Univ. of Cambridge (England)

Simultaneous in situ measurements of NO, NO{sub 2}, HNO{sub 3}, O{sub 3}, N{sub 2}O, pressure, and temperature at 30 km have been made from Palestine. Texas (32{degree}N) on September 13, 1988, using the Jet Propulsion Laboratory Balloon-Borne Laser In-Situ Sensor (BLISS) instrument, with the NOAA dual-channel balloon UV ozone spectrometer on the same gondola. Using tunable diode laser absorption spectroscopy over a long path length, measurements were made during a 24-hour flight of the daytime concentrations of NO, NO{sub 2}, and O{sub 3} and of the diurnal variation in the concentration of NO{sub 2}. Postsunset measurements of NO{sub 2}, made every half minutes throughout much of the night, show the NO{sub 2} mixing ratio falling from a sunset value of 10.5 ppbv to 5.2 ppbv at nights end. From the sunset/sunrise difference din the volume mixing ratio of NO{sub 2} is derived a value of 2.7 {plus minus} 0.4 ppbv for the sunrise N{sub 2}O{sub 5} mixing ratio, in excellent agreement with the model predictions of 2.9 ppbv at this latitude. The measured daytime NO{sub 2}/NO ratio was found to be in good agreement with model predictions at 30 km. The measured presunset sum NO + NO{sub 2} of 10.1 {plus minus} 0.8 ppbv agreed well with the measured postsunset NO{sub 2} amount of 10.5 {plus minus} 0.8 ppbv. Simultaneous measurements of the mixing ratios of HNO{sub 3} and postsunset NO{sub 2} allow an estimate of total reactive nitrogen, approximated at this time by NO{sub 2} + HNO{sub 3} + 2(N{sub 2}O{sub 5}) + ClONO{sub 2}, of 16.4 {plus minus} 1.2 ppbv at 30 km, and (from an earlier flight) of 13.7 {plus minus} 1.7 ppbv at 37 km. Using model predictions incorporating corrections for non-steady state and for diurnal chemistry, an OH mixing ratio of 8 {plus minus} 4 pptv is derived from the measured HNO{sub 3}/NO{sub 2} ratio of 0.72 {plus minus} 0.17 at 30 km.

OSTI ID:
6061710
Journal Information:
Journal of Geophysical Research; (USA), Vol. 95:D9; ISSN 0148-0227
Country of Publication:
United States
Language:
English