skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The thermal stability of amorphous nickel-niobium alloys

Miscellaneous ·
OSTI ID:5999850

Amorphous metallic alloys have been found to have features that make them exciting candidate materials for the electron device industry. Some of these features include resistance to electromigration and interdiffusion with other component materials. These features are primarily the result of the absence of grain boundaries in the amorphous alloy. However, if these materials are to be used in devices exposed to elevated temperatures it is important to understand the thermal stability of the amorphous alloy. The thermal stability of amorphous nickel niobium alloys was investigated in this work. The assessment of thermal performance was based on crystallization temperature, diffusion properties, and interface stability of the amorphous alloys with metallic overlayers and silicon substrates. Thermal treatments spanned the temperature range from 400{degree}C to 850{degree}C for times of 5 minutes to 96 hours. The primary experimental methods included x-ray diffraction, Rutherford backscattering spectroscopy, and electron microscopy. The alloys studied had compositions of 60, 65, 70 and 75 atomic percent nickel and are listed in order of their thermal stability. The 60 at% alloys have the highest one hour crystallization temperatures of 700{degree}C. All alloys are very stable until crystallization occurs. This is evidenced by the sluggish diffusion rates (10{sup {minus}19} cm{sup 2}/sec) measured at the overlayer/glass interface. Similarly, substrate interactions are not observed until crystallization has began. Once the grain boundaries develop with the initiation of crystallization interdiffusion of Ni and Si proceeds and eventual silicide formation is observed. Combining the results of the silicide reaction kinetics and the x-ray diffraction data allowed the estimation of the time-temperature-transformation curve.

Research Organization:
Wisconsin Univ., Madison, WI (USA)
OSTI ID:
5999850
Resource Relation:
Other Information: Thesis (Ph. D.)
Country of Publication:
United States
Language:
English