skip to main content

Title: Numerical Modeling of the Stability of Face-Centered Cubic Metals with High Vacancy Concentration

The objective of this research is to assess the possibility of forming an atomically porous structure in a low-density metal, e.g., Al with vacancies up to 0.20/lattice site; and to examine the effects of hydrogen and vacancy concentration on the stability of an atomically porous structure that has been experimentally produced in nickel. The approach involves numerical modeling using the Embedded-Atom Method (EAM). High vacancy concentrations cause the Al lattice to disorder at 300K. In contrast, Ni retains the face-centered-cubic structure at 300K for vacancy concentrations up to 0.15 Vac/lattice site. Unexpectedly, the lattice with 0.15 Vac/lattice site is more stable than the lattice with 0.10 or 0.20 Vac/lattice site. The Ni systems with 0.10 and 0.15 Vac/lattice site exhibit domains consisting of uniform lattice rotations. The Ni lattice with 0.15 Vac/lattice site is more stable with an initial distribution of random vacancies compared to ordered vacancies. The equilibrium lattice structures of Ni a d Al containing vacancies and H are less ordered to structures with vacancies only at 300K.
Authors:
;
Publication Date:
OSTI Identifier:
5989
Report Number(s):
SAND99-8207
TRN: AH200115%%356
DOE Contract Number:
AC04-94AL85000
Resource Type:
Technical Report
Resource Relation:
Other Information: PBD: 1 Dec 1998
Research Org:
Sandia National Labs., Albuquerque, NM (US); Sandia National Labs., Livermore, CA (US)
Sponsoring Org:
US Department of Energy (US)
Country of Publication:
United States
Language:
English
Subject:
08 HYDROGEN; 36 MATERIALS SCIENCE; DISTRIBUTION; FCC LATTICES; HYDROGEN; NICKEL; STABILITY; VACANCIES