skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Nondestructive measurement and analysis of residual stress in and around welds--A state of the art survey

Journal Article · · Welding Research Council Bulletin; (United States)
OSTI ID:5965711

One objective of mechanical design of welded fabrications is to compensate loads by stresses which the materials used in structural components can accommodate. Beside these load-induced stresses, residual stresses also have to be considered. These residual stresses are built up during weld pool cooling. All welded structures therefore have residual stresses, which can be relieved by heat treatment to below the yield-stress level at the annealing temperature. If not fully relieved, their presence can accelerate corrosion and corrosive cracking of welds. Quality assurance of welded structures needs tools for quantitative nondestructive analysis of stress states. The only nondestructive technique specifically developed for measurement and analysis of stress states is x-ray diffraction. Special devices for application under industrial or on-site environments have been developed and are extensively used. This type of measurement can be time-consuming, depending on the equipment, and has practical limitations. Moreover the penetration of x-rays into metals is small, in the order of 30 microns, and the measurements can be affected by other surface-related disturbance caused by machining and surface finishing. In the last ten years extensive research and development has been done to develop stress-analyzing techniques of a typical ndt-style,'' i.e., the use of a probe manipulated by hand or a manipulator, together with portable equipment. The present state of development of such an approach and the most important results obtained up to now are described in the following article.

OSTI ID:
5965711
Journal Information:
Welding Research Council Bulletin; (United States), Vol. 383; ISSN 0421-2118
Country of Publication:
United States
Language:
English