skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Computational study of stall flutter in linear cascades

Journal Article · · Journal of Turbomachinery; (United States)
DOI:https://doi.org/10.1115/1.2929200· OSTI ID:5954277
; ;  [1]
  1. Stevens Institute of Tech., Hoboken, NJ (United States). Dept. of Mechanical Engineering

Aeroelastic interaction in turbomachinery is of prime interest to operators, designers, and aeroelasticans. Operation at off-design conditions may promote blade stall; eventually the stall pattern will propagate around the blade annulus. The unsteady periodic nature of propagating stall will force blade vibration and blade flutter may occur if the stall propagation frequency is entrained by the blade natural frequency. In this work a computational scheme based on the vortex method is used to simulate the flow over a linear cascade of airfoils. The viscous effect is confined to a thin layer, which determines the separation points on the airfoil surfaces. The preliminary structural model is a two-dimensional characteristic section with a single degree of freedom in either bending or torsion. A study of the relationship between the stall propagation frequency and the blade natural frequency has been conducted. The study shows that entrainment, or frequency synchronization, occurs, resulting in pure torsional flutter over a certain interval of reduced frequency. A severe blade torsional amplitude (of order 20 deg) has been computed in the entrainment region, reaching its largest value in the center of the interval. However, in practice, compressor blades will not sustain this vibration and blade failure may occur before reaching such a large amplitude. Outside the entrainment interval the stall propagation is shown to be independent of the blade natural frequency. In addition, computational results show that there is no entrainment in the pure bending mode. Rather, de-entrainment occurs with similar flow conditions and similar stall frequencies, resulting in blade buffeting in pure bending.

OSTI ID:
5954277
Journal Information:
Journal of Turbomachinery; (United States), Vol. 115:1; ISSN 0889-504X
Country of Publication:
United States
Language:
English

Similar Records

The effect of steady aerodynamic loading on the flutter stability of turbomachinery blading
Journal Article · Fri Jan 01 00:00:00 EST 1993 · Journal of Turbomachinery; (United States) · OSTI ID:5954277

Stall Flutter Control of a Smart Blade Section Undergoing Asymmetric Limit Oscillations
Journal Article · Fri Jan 01 00:00:00 EST 2016 · Shock and Vibration · OSTI ID:5954277

A numerical study of flutter in a transonic fan
Journal Article · Wed Jul 01 00:00:00 EDT 1998 · Journal of Turbomachinery · OSTI ID:5954277