skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Needle coke and carbon fiber production from Venezuelan oil residues. (Volumes I and II)

Miscellaneous ·
OSTI ID:5865098

The conversion of high boiling petroleum residues to carbonaceous materials is investigated. A new integrated approach is presented in which Nuclear Magnetic Resonance (NMR) spectroscopy, optical microscopy, physico-chemical separations, and pilot plant operations are combined to better understand the carbonization process and to develop criteria for prediction of product quality. This methodology is applied to several Venezuelan oil residues obtained from refinery and pilot plant operations to evaluate their potential for producing high value carbon products such as needle coke and carbon fibers. Feedstocks, reaction intermediates, and products are characterized by [sup 1]H and [sup 13]C NMR in terms of basic hydrocarbon constituents, and changes in carbon and proton distributions are measured. The extent of aromatization and other structural changes resulting from thermal cracking reactions are calculated for the first time by combining pilot plant data with NMR spectroscopic data in both the liquid and solid states. Improved methods for interpreting NMR data of liquid and solid materials from petroleum residues are developed. The effects of operating conditions and the role of different fractions obtained by distillation, n-pentane extraction and high performance liquid chromatography during reaction are documented. Delayed coking and thermal cracking pilot plant experiments were designed and carried out to simulate refinery operation and to provide samples for further characterization. Representative samples of coke were evaluated for use as electrodes in electric arc furnaces. It is shown that by proper selection of feedstock and operational parameters, premium quality needle cokes can be produced. A laboratory scale melt spinning apparatus to produce continuous mesophase pitch carbon fibers was designed and built. The ability to produce thin filaments (less than 20 [mu]m diameter) from petroleum pitches was demonstrated.

Research Organization:
Pittsburgh Univ., PA (United States)
OSTI ID:
5865098
Resource Relation:
Other Information: Thesis (Ph.D.)
Country of Publication:
United States
Language:
English