skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Effect of calcination on Co-impregnated active carbon

Journal Article · · Journal of Colloid and Interface Science; (United States)
;  [1]
  1. Bulgarian Academy of Sciences, Sofia (Bulgaria). Inst. of General and Inorganic Chemistry

Active carbon (AC) from apricot shells with known characteristics has been impregnated with a 9.88% Co(NO[sub 3])[sub 2] [center dot] 6H[sub 2]O solution. The samples are destroyed in air at 200, 300, 400, and 550 C. The processes accompanying the thermal treatment are studied by DTA. Two processes are established during calcination of Co-impregnated active carbon: (i) destruction of the support as a result of oxidation catalyzed by the impregnated cobalt and (ii) interaction of the active phase (Co[sub 3]O[sub 4]) with the support (AC), during which Co[sub 3]O[sub 4] is reduced to CoO and Co. The presence of Co[sub 3]O[sub 4], and CoO phases is proved by X-ray measurements, while that of metal Co is established by magnetic measurements. The porous structure changes are investigated by adsorption studies. The characterization of the samples is performed by physical adsorption of N[sub 2] (77.4 K) and CO[sub 2] (273 K). The poresize distribution curves are plotted over the range 0.4--10 nm by the methods of Pierce (for the mesopores) and Medek (for the micropores). The micropore volume is determined by two independent methods: t/F method and D-R plot. The results from adsorption studies indicate a decrease of S[sub BET], V[sub mi], and, especially, the supermicropores of the samples.

OSTI ID:
5836478
Journal Information:
Journal of Colloid and Interface Science; (United States), Vol. 161:1; ISSN 0021-9797
Country of Publication:
United States
Language:
English