skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Interactions of ( sup 3 H)amphetamine with rat brain synaptosomes. I. Saturable sequestration

Journal Article · · Journal of Pharmacology and Experimental Therapeutics; (USA)
OSTI ID:5760557
; ; ; ;  [1]
  1. Addiction Research Center, Baltimore, MD (USA)

Previous studies have identified a saturable site of d-({sup 3}H)amphetamine sequestration (AMSEQ) in rat brain synaptosomes. The present study characterized AMSEQ with respect to its subcellular, neuronal and regional distributions, ontogenetic development, pharmacological specificity and factors required for its maintenance. Although AMSEQ was reduced when assays were performed in Krebs' buffer incubated at 37{degree}C as compared to assays performed in isotonic Tris-sucrose buffer incubated at room temperature, the pharmacological profiles of AMSEQ were virtually identical under both conditions. AMSEQ was negligible in tissues outside the central nervous system, enriched in synaptosomes and partially reduced by striatal kainic acid lesion, indicating neuronal localization. The distribution of AMSEQ in the central nervous system was heterogenous. Highest levels were present in hypothalamus with progressively lower levels noted in parietal cortex, frontal cortex, striatum, thalamus, hippocampus, midbrain, cerebellum, pons-medulla and spinal cord. With regard to its ontogeny, AMSEQ increased early in neonatal life, reaching adult levels by postnatal day 14. Although the effects of amphetamine to abolish the transynaptosomal pH gradient suggest a possible role for this gradient in the maintenance of AMSEQ, the pharmacological profile of AMSEQ indicates that other factors are involved. An interaction with an intrasynaptosomal acid, such as N-acetylaspartate, may account for AMSEQ maintenance. AMSEQ did not possess a stereospecific preference for either d-(IC50 = 177 microM) or I-amphetamine (IC50 = 173 microM). However, the pharmacological profile of AMSEQ indicated structural specificity with antidepressants being relatively potent inhibitors. (Abstract Truncated)

OSTI ID:
5760557
Journal Information:
Journal of Pharmacology and Experimental Therapeutics; (USA), Vol. 257:2; ISSN 0022-3565
Country of Publication:
United States
Language:
English