skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Competition among rhizobium species for nodulation of Leucaena leucocephala in two tropical soils

Journal Article · · Appl. Environ. Microbiol.; (United States)
OSTI ID:5750278

The successful nodulation of legumes by a Rhizobium strain is determined by the competitve ability of that strain against the mixture of other native and inoculant rhizobia. Competition among six Leucaena rhizobial strains in single and multistrain inoculants were studied. Field inoculation trials were conducted in an oxisol and a mollisol soil, both of which contained indigenous Leucaena-nodulating rhizobia. Strain-specific fluorescent antibodies were used for the identification of the strains in Leucaena nodules. Mixtures of three recommended inoculum strains for Leucaena species (TAL82, TAL582, and TAL1145) were used in peat-based inocula either alone or with one of the three other strains isolated from the sites, B213, B214, and B215. Each of these latter three strains was also used as single-strain inocula to study their competition with the native rhizobia in the two soil systems. In the oxisol soil, strains B213 and B215, when used as single-strain inocula, outcompeted the native rhizobia and formed 92 and 62% of the nodules, respectively. Strain B214 was the least competitive in oxisol soil, where it formed 30% of the nodules, and the best in mollisol soil, where it formed 70% of the nodules. The most successful competitor for nodulation in multistrain inocula was strain TAL1145, which outcompeted native and other inoculum Leucaena rhizobia is both soils. None of the strains in single or multistrain inoculants was capable of completely overcoming the resident rhizobia, which formed 4 to 70% of the total nodules in oxisol soil and 12 to 72% in mollisol soil. No strong relationship was detected between the size of the rhizosphere population of a strain and its successful occupation of nodules. 24 references.

Research Organization:
Univ. of Hawaii, Honolulu
OSTI ID:
5750278
Journal Information:
Appl. Environ. Microbiol.; (United States), Vol. 48:1
Country of Publication:
United States
Language:
English