skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: NMR study of oligonucleotides containing base pair mismatches and a human growth hormone peptide for the determination of solution structures

Miscellaneous ·
OSTI ID:5671505

Formation of unusual basepairs in DNA for random mutations in DNA was proposed in the sixties. These mismatches arise due to errors in replication, and from deamination of the 5-methylcytosine. The author's interest in studying mismatches and other oligonucleotides has been two fold. One is related to {sup 31}P chemical shifts and the backbone structure of oligonucleotides. He wanted to find out the significance of the dispersion of {sup 31}p chemical shifts in oligonucleotides. He wished to address whether this dispersion in {sup 31}P chemical shifts is related to global structural parameters of oligonucleotides like helix twist and whether he can prove the relationship between {sup 31}P chemical shifts and the backbone torsional angles epsilon and zeta. How does a mismatch affect {sup 31}P chemical shifts and the backbone torsional angle The second interest is related to solving the three dimensional structure of these biopolymers by using NMR data (NOESY distances) and computer simulations. His major study of these mismatches has been in the assignments of the protons resonances and the phosphorus resonances by 2D NMR. He has also tried to answer the question about the relationships between {sup 31}P chemical shifts and global parameters for DNA such as the helix twist. He has made substantial progress in determination of J(H3{prime}-P) coupling constants by 2D NMR and also in determining the relationship between the SIP chemical shifts and the backbone torsional angles by using the mismatch dodecamer sequences and the tetradecamer sequences. The 2D NMR data for the GG and GT mismatch have been used to determine three dimensional structures by using distance restrained molecular dynamics. The second project involved studying a 28 residue synthetic peptide by NMR.

Research Organization:
Purdue Univ., Indianapolis, IN (United States)
OSTI ID:
5671505
Resource Relation:
Other Information: Thesis (Ph. D.)
Country of Publication:
United States
Language:
English