skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Lithium niobate miniature lasers and single-crystal fibers

Thesis/Dissertation ·
OSTI ID:5653947

LiNbO{sub 3} is a widely used optical material because of its excellent electro-optic and nonlinear properties. By doping LiNbO{sub 3} with an active ion such as Nd, laser oscillation and amplification are added to the panoply of LiNbO{sub 3} device possibilities. Furthermore, by providing LiNbO{sub 3} devices with the waveguide confinement of single-crystal fibers, their performance can be significantly improved. Chapter 1 introduces the subject. Chapter 2 is devoted to miniature continuous-wave Nd:MgO:LiNbO{sub 3} lasers. Important results are the first demonstration of room-temperature, true continuous-wave laser oscillation in Nd-doped LiNbO{sub 3} and the first demonstration of diode-pumped laser action in this material. The Nd:MgO:LiNbO{sub 3} lasers exhibited pump power thresholds (1.9 mW) and slope efficiencies (45%) that are among the state-of-the-art in solid state lasers. Chapter 2 also contains a detailed study on photoconductivity. It explains how the addition of MgO eliminates photorefractive damage. Chapter 3 studies Q-switched laser operation in Nd:MgO:LiNbO{sub 3}. Q-switching consists of generating very intense, nanosecond pulses by rapidly switching the cavity loss.

Research Organization:
Stanford Univ., CA (USA)
OSTI ID:
5653947
Resource Relation:
Other Information: Thesis (Ph. D.)
Country of Publication:
United States
Language:
English