skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A comparison of equilibrium partitioning and critical body residue approaches for predicting toxicity of sediment-associated fluoranthene to freshwater amphipods

Journal Article · · Environmental Toxicology and Chemistry
 [1];  [2]
  1. Univ. of Michigan, Ann Arbor, MI (United States). Cooperative Inst. for Limnology and Ecosystem Research
  2. National Oceanic and Atmospheric Administration, Ann Arbor, MI (United States). Great Lakes Environmental Research Lab.

Equilibrium partitioning (EqP) theory predicts that the effects of organic compounds in sediments can be assessed by comparison of organic carbon-normalized sediment concentrations and estimated pore-water concentrations to effects determined in water-only exposures. A complementary approach, the critical body residue (CBR) theory, examines actual body burdens in relation to toxic effects. Critical body residue theory predicts that the narcotic effects of nonpolar compounds should be essentially constant for similar organisms, and narcosis should be observed at body burdens of 2 to 8 {micro}mol/g tissue. This study compares these two approaches for predicting toxicity of the polycyclic aromatic hydrocarbon (PAH) fluoranthene. The freshwater amphipods Hyalella azteca and Diporeia spp. were exposed for up to 30 d to sediment spiked with radiolabeled fluoranthene at concentrations of 0.1 (trace) to 3.940 nmol/g dry weight (= 346 {micro}mol/g organic carbon). Mean survival of Diporeia was generally high (>70%) and not significantly different from that of control animals. This result agrees with EqP predictions, because little mortality was observed for Diporeia in 10-d water-only exposures to fluoranthene in previous studies. After 10-d exposures, mortality of H. azteca was not significantly different from that of controls, even though measured interstitial water concentrations exceeded the previously determined 10-d water-only median lethal concentration (LC50). Equilibrium partitioning overpredicted fluoranthene sediment toxicity in this species. More mortality was observed for H. azteca at later time points, and a 16-d LC50 of 3.550 nmol/g dry weight sediment (291 {micro}mol/g organic carbon) was determined. A body burden of 1.10 {micro}mol fluoranthene-equivalents/g wet weight in H. azteca was associated with 50% mortality after 16-d exposures. Body burdens as high as 5.9 {micro}mol/g wet weight resulted in little mortality in Diporeia.

Sponsoring Organization:
USDOE
OSTI ID:
563996
Journal Information:
Environmental Toxicology and Chemistry, Vol. 16, Issue 10; Other Information: PBD: Oct 1997
Country of Publication:
United States
Language:
English