skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Methods for spatial localization in NMR

Thesis/Dissertation ·
OSTI ID:5624440

Several unique coil configurations were developed that have applications in nuclear magnetic resonance. These include a number of designs appropriate for use as rf surface coils, and two configurations developed as NMR magnets. The magnetic field profiles were calculated for each of these designs, from which field strength and homogeneity information were obtained. The rf coil configurations modelled include the opposed loop, opposed half loop, bicycle wheel, opposed bicycle wheel, and semi-toroid. The opposed loop design was studied in detail in terms of the theoretical spatial sensitivity and selectivity it offers. A number of NMR experiments were performed to test the validity of these theoretical calculations. This configuration produces a field that is substantially reduced near the coil itself, compared with the field produced by a single loop surface coil, but that rises to a maximum along the coil axis yielding a somewhat homogeneous region that may be used to achieve a degree of spatial localization. Several comparison schemes are used to evaluate the relative advantages and disadvantages of both the single loop and the opposed loop coil. The opposed coil concept also has been applied to the design of magnets. The results of calculations on the homogeneity and field strength possible with an opposed solenoid magnet are presented.

Research Organization:
California Univ., San Diego (USA)
OSTI ID:
5624440
Resource Relation:
Other Information: Thesis (Ph. D.)
Country of Publication:
United States
Language:
English