skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Neurogenetic and morphogenetic heterogeneity in the bed nucleus of the stria terminalis

Journal Article · · J. Comp. Neurol.; (United States)

Neurogenesis and morphogenesis in the rat bed nucleus of the stria terminalis (strial bed nucleus) were examined with (/sup 3/H)thymidine autoradiography. For neurogenesis, the experimental animals were the offspring of pregnant females given an injection of (/sup 3/H)thymidine on 2 consecutive gestational days. Nine groups of embryos were exposed to (/sup 3/H)thymidine on E13-E14, E14-E15,... E21-E22, respectively. On P60, the percentage of labeled cells and the proportion of cells originating during 24-hour periods were quantified at six anteroposterior levels in the strial bed nucleus. On the basis of neurogenetic gradients, the strial bed nucleus was divided into anterior and posterior parts. The anterior strial bed nucleus shows a caudal (older) to rostral (younger) neurogenetic gradient. Cells in the vicinity of the anterior commissural decussation are generated mainly between E13 and E16, cells just posterior to the nucleus accumbens mainly between E15 and E17. Within each rostrocaudal level, neurons originate in combined dorsal to ventral and medial to lateral neurogenetic gradients so that the oldest cells are located ventromedially and the youngest cells dorsolaterally. The most caudal level has some small neurons adjacent to the internal capsule that originate between E17 and E20. In the posterior strial bed nucleus, neurons extend ventromedially into the posterior preoptic area. Cells are generated simultaneously along the rostrocaudal plane in a modified lateral (older) to medial (younger) neurogenetic gradient. Ventrolateral neurons originate mainly between E13 and E16, dorsolateral neurons mainly between E15 and E16, and medial neurons mainly between E15 and E17. The youngest neurons are clumped into a medial core area just ventral to the fornix.

Research Organization:
Indiana-Purdue Univ., Indianapolis
OSTI ID:
5601232
Journal Information:
J. Comp. Neurol.; (United States), Vol. 265:1
Country of Publication:
United States
Language:
English