skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: D-optimal design applied to binding saturation curves of an enkephalin analog in rat brain

Journal Article · · Life Sci.; (United States)

The D-optimal design, a minimal sample design that minimizes the volume of the joint confidence region for the parameters, was used to evaluate binding parameters in a saturation curve with a view to reducing the number of experimental points without loosing accuracy in binding parameter estimates. Binding saturation experiments were performed in rat brain crude membrane preparations with the opioid ..mu..-selective ligand (/sup 3/H)-(D-Ala/sup 2/, MePhe/sup 4/, Gly-ol/sup 5/)enkephalin (DAGO), using a sequential procedure. The first experiment consisted of a wide-range saturation curve, which confirmed that (/sup 3/H)-DAGO binds only one class of specific sites and non-specific sites, and gave information on the experimental range and a first estimate of binding affinity (K/sub a/), capacity (B/sub max/) and non-specific constant (k). On this basis the D-optimal design was computed and sequential experiments were performed each covering a wide-range traditional saturation curve, the D-optimal design and a splitting of the D-optimal design with the addition of 2 points (+/- 15% of the central point). No appreciable differences were obtained with these designs in parameter estimates and their accuracy. Thus, sequential experiments based on D-optimal design seem a valid method for accurate determination of binding parameters, using far fewer points with no loss in parameter estimation accuracy. 25 references, 2 figures, 3 tables.

Research Organization:
Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
OSTI ID:
5515903
Journal Information:
Life Sci.; (United States), Vol. 42:6
Country of Publication:
United States
Language:
English