skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Calcium uptake in brain synaptosomes: a pharmacologic study

Thesis/Dissertation ·
OSTI ID:5509467

Pinched-off nerve endings (synaptosomes) from rat and guinea pig brain were used as a model to study Ca/sup 2 +/ entry mechanisms in neuronal tissue. Synaptosomes contain high affinity binding sites for both, 1,4-dihydropyridine Ca/sup 2 +/ channel antagonists, and activators. The thermodynamic characteristics of (/sup 3/H)nitrendipine building in synaptosomes were similar to those seen in both cardiac and smooth muscle preparations. Synaptosomes display two distinct K/sup +/-induced Ca/sup 2 +/ entry mechanisms. These are kinetically distinct with the faster of the two terminating in approx. 1 second while the slower persists for approx. minute. The slow phase uptake process is abolished in Na/sup +/-free media, is sensitive to antagonism by 3,4-dichlorobenzamil and displays a more rapid ontogenic appearance relative to the fast phase. It is likely that the slow phase represents Ca/sup 2 +/ entry via Na/sup +//Ca/sup 2 +/ exchange. The rapid inactivation of the fast phase coupled with its voltage dependence suggest that it represents Ca/sup 2 +/ entry via one or more types of voltage dependent Ca/sup 2 +/ channels. These channels may not be dihydropyridin sensitive since neither nitrendipine nor Bay K 8644 were shown to modulate synaptosomal Ca/sup 2 +/ uptake. The benzodiazepine receptor ligands Ro 5-4864, PK 11195 and diazepam all selectively inhibited fast phase Ca/sup 2 +/ entry relative to slow phase entry. In addition, these compounds altered (/sup 3/H)nitrendipine binding affinity. It is concluded that certain benzodiazepine receptor ligands can interact specifically with voltage dependent Ca/sup 2 +/ channels.

Research Organization:
State Univ. of New York, Buffalo (USA)
OSTI ID:
5509467
Resource Relation:
Other Information: Thesis (Ph. D.)
Country of Publication:
United States
Language:
English