skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: AUR memorial award--1988. MRI enhancement of perfused tissues using chromium labeled red blood cells as an intravascular contrast agent

Journal Article · · Investigative Radiology; (USA)

It has been demonstrated that chromium (Cr) labeling significantly decreases the relaxation times of packed red blood cells (RBCs). In this study, the spin-lattice relaxation time (T1) of human red cells was shortened from 836 ms to 29 ms and the spin-spin relaxation time (T2) shortened from 134 ms to 18 ms, when the cells were labeled at a Cr incubation concentration of 50 mM. Labeling of canine cells at 50 mM resulted in a T1 of 36 ms and a T2 of 26 ms. A labeling concentration of 10 mM produced similar relaxation enhancement, with uptake of 47% of the available Cr, and was determined to be optimal. The enhancement of longitudinal and transverse relaxation rates (1/T1,-1/T2) per amount of hemoglobin-bound Cr are 6.9 s-1 mM-1 and 9.8 s-1 mM-1 respectively, different from those of a pure Cr+3 solution. Labeling cells at 10 mM decreased the survival half-time in vivo from 16.6 days to 4.7 days in dogs. No difference in red cell survival was found with the use of hetero-transfusion versus auto-transfusion of labeled RBCs. Significant shortening of the T1 (912 ms to 266 ms, P = .03) and T2 (90 ms to 70 ms, P = .006) of spleen and the T1 (764 ms to 282 ms, P = .005) and the T2 (128 ms to 86 ms, P = .005) of liver occurred when 10% of the RBC mass of dogs was exchanged with Cr labeled cells. Liver and spleen spin density changes (P greater than 0.23) and muscle spin density and relaxation changes (P greater than 0.4) were insignificant. The in vivo T1 of a canine spleen which had been infarcted did not change following transfusion with labeled cells, where the T1 of liver did shorten. We believe this preliminary study suggests that Cr labeled red cells may have the potential to become an intravascular magnetic resonance imaging contrast agent.

OSTI ID:
5226981
Journal Information:
Investigative Radiology; (USA), Vol. 24:10; ISSN 0020-9996
Country of Publication:
United States
Language:
English