skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Inhibition of the Ca sup 2+ -ATPase of vascular smooth muscle sarcoplasmic reticulum by superoxide radicals

Conference · · FASEB Journal (Federation of American Societies for Experimental Biology); (United States)
OSTI ID:5213564
;  [1]
  1. Medical College of Virginia, Richmond (United States)

The effect of oxygen free radicals generated by hypoxanthine plus xanthine oxidase on the Ca{sup 2+}-ATPase of sarcoplasmic reticulum from bovine aortic smooth muscle were studied. Exogenous hypoxanthine plus xanthine oxidase produced an hypoxanthine concentration dependent inhibition of the Ca{sup 2+}-ATPase. The inhibition could be completely blocked by superoxide dismutase but not by either mannitol or deferoxamine. Direct addition of reagent hydrogen peroxide in the {mu}M range did not cause significant inhibition. These results suggest that superoxide is the primary damaging species. Additionally, 1.16 {plus minus} 0.17 mU/g wet wt of xanthine oxidase activity were detected in the post-nuclear supernatant of bovine aortic smooth muscle, suggesting the existence of a possible intracellular source of superoxide. This value was calculated to be approximately 5 mU/ml by using a usual value of vascular smooth muscle cellular volume. Thus the level of endogenous xanthine oxidase resident in vascular smooth muscle is comparable with the level of exogenous xanthine oxidase used in the present study. These findings suggest a potential role of xanthine oxidase-generated superoxide in free radical injury to vascular smooth muscle.

OSTI ID:
5213564
Report Number(s):
CONF-9104107-; CODEN: FAJOE
Journal Information:
FASEB Journal (Federation of American Societies for Experimental Biology); (United States), Vol. 5:5; Conference: 75. annual meeting of the Federation of American Societies for Experimental Biology (FASEB), Atlanta, GA (United States), 21-25 Apr 1991; ISSN 0892-6638
Country of Publication:
United States
Language:
English