skip to main content

Title: Reduced exercise time in competitive simulations consequent to low level ozone exposure

Ten highly trained endurance athletes were studied to determine the effects of exposure to low ozone (O/sub 3/) concentrations on simulated competitive endurance performance and associated physiological and subjective symptom responses. Each subject was randomly exposed to filtered air (FA), and to 0.12, 0.18, and 0.24 ppm O/sub 3/ while performing a 1 h competitive simulation protocol on a bicycle ergometer. Endurance performance was evaluated by the number of subjects unable to complete rides (last 30 min at an intense work load of approximately 86% VO/sub 2/max). All subjects completed the FA exposure, whereas one, five, and seven subjects did not complete the 0.12, 0.18, and 0.24 ppm O/sub 3/ exposures, respectively. Statistical analysis indicated a significant (P less than 0.05) increase in the inability of subjects to complete the competitive simulations with increasing O/sub 3/ concentration, including a significant difference between the 0.24 ppm O/sub 3/ and FA exposure. Significant decreases (P less than 0.05) were also observed following the 0.18 and 0.24 ppm O/sub 3/ exposures, respectively, in forced vital capacity (-7.8 and -9.9%), and forced expiratory volume in 1 s (-5.8 and -10.5%). No significant O/sub 3/ effect was observed for exercise respiratory metabolism or ventilatory patternmore » responses. However, the number of reported subjective symptoms increased significantly following the 0.18 and 0.24 ppm O/sub 3/ protocols. These data demonstrate significant decrements in simulated competitive endurance performance and in pulmonary function, with accompanying enhanced subjective symptoms, following exposure to low O/sub 3/ levels commonly observed in numerous metropolitan environments during the summer months.« less
Authors:
;
Publication Date:
OSTI Identifier:
5070829
Resource Type:
Journal Article
Resource Relation:
Journal Name: Med. Sci. Sports. Exercise.; (United States); Journal Volume: 4
Research Org:
Univ. of California, Davis
Country of Publication:
United States
Language:
English
Subject:
63 RADIATION, THERMAL, AND OTHER ENVIRON. POLLUTANT EFFECTS ON LIVING ORGS. AND BIOL. MAT.; LUNGS; DYNAMIC FUNCTION STUDIES; OZONE; BIOLOGICAL EFFECTS; DOSE-RESPONSE RELATIONSHIPS; EXERCISE; INHALATION; MAN; PERFORMANCE; RESPIRATION; ANIMALS; BODY; INTAKE; MAMMALS; ORGANS; PRIMATES; RESPIRATORY SYSTEM; VERTEBRATES 560306* -- Chemicals Metabolism & Toxicology-- Man-- (-1987)