skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: 2-Nitro-3-(p-hydroxyphenyl)propionate and aci-1-nitro-2-(p-hydroxyphenyl)ethane, two intermediates in the biosynthesis of the cyanogenic glucoside dhurrin in Sorghum bicolor (L. ) Moench

Journal Article · · Proceedings of the National Academy of Sciences of the United States of America; (United States)
; ;  [1]
  1. Royal Veterinary and Agricultural Univ., Copenhagen (Denmark)

The biosynthetic pathway for the cyanogenic glucoside dhurrin derived from tyrosine has been studied in vitro by using ({sup 18}O)oxygen and a microsomal enzyme system obtained from etiolated sorghum seedlings. The products formed were purified by HPLC and TLC, and the incorporation of ({sup 18}O)oxygen was monitored by mass spectrometry. In the presence of NADPH and ({sup 18}O)dioxygen, L-tyrosine is converted to (E)- and (Z)-p-hydroxyphenylacetaldhyde oxime with quantitative incorporation of an ({sup 18}O)oxygen atom into the oxime function. These data demonstrate that the conversion of N-hydroxytyrosine to p-hydroxyphenylacetaldehyde oxime involves additional N-hydroxylation and N-oxidation reactions giving rise to the formation of 2-nitro-3-(p-hydroxyphenyl)propionate, which by decarboxylation produces aci-1-nitro-2-(p-hydroxyphenyl)ethane. Both compounds are additional intermediates in the pathway. The two ({sup 18}O)oxygen atoms introduced by the N-hydroxylations are enzymatically distinguishable as demonstrated by the specific loss of the oxygen atom introduced by the first N-hydroxylation reaction in the subsequent conversion of aci-1-nitro-2-(p-hydroxyphenyl)ethane to (E)-p-hydroxyphenylacetaldehyde oxime. A high flux of intermediates through the microsomal enzyme system is obtained with N-hydroxytyrosine as a substrate. This renders the conversion of the aci-nitro compound rate limiting and results in its release from the active site of the enzyme system and accumulation of the tautomeric nitro compound.

OSTI ID:
5016492
Journal Information:
Proceedings of the National Academy of Sciences of the United States of America; (United States), Vol. 88:2; ISSN 0027-8424
Country of Publication:
United States
Language:
English