skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Simulation of the xerographic recharge process

Conference ·
OSTI ID:489561

Laser xerography (e.g. laser printing, photo-copying, etc.) involves the sequential steps: uniform charging of the photoconductor surface, discharging spots with a laser beam, developing the latent image on the photoconductor surface by the attachment of charged toner particles, and finally transfer-ring the image to paper through mechanical and electrostatic forces. Simulations have been developed that model these process from first-principles. Color reproduction involves multiple passes through these steps; once for each color separation (e.g. multiple toner layers on the photoconductor). Here we study the charging of the photoconductor surface, in situations of high mass-coverage with a 2D fluid model, and low mass coverage with a 3D particle model. Charge is sprayed using a corona, type discharge called a scorotron. We axe developing a 2D fluid model of the recharge process based on extending existing models. We use empirical IN data for the scorotron. A Boundary Integral Equation Method (BIEM) is used to solve for the field, and method of characteristics (MOC) to solve the charge continuity equation. Also developed, is a 3D particle model, where the field is solved using 3D BIEM and ionized air molecules axe treated as point charges which follow their average drift motion. Diffusion can be neglected because of the high voltage bias. Toner particles axe treated as finite size spherical dielectrics with nonuniform attached surface charge. We will show initial numerical results for both models. The purpose of this work is to develop a better understanding of how charge in transported through the toner layers in subsequent recharging during color laser xerography.

OSTI ID:
489561
Report Number(s):
CONF-960354-; TRN: 97:011709
Resource Relation:
Conference: International Sherwood fusion theory conference, Philadelphia, PA (United States), 18-20 Mar 1996; Other Information: PBD: 1996; Related Information: Is Part Of 1996 international Sherwood fusion theory conference; PB: 244 p.
Country of Publication:
United States
Language:
English