skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Nonlinear particle-wave kinetics in weakly unstable plasmas

Conference ·
OSTI ID:489406
; ;  [1]
  1. Univ. of Texas, Austin, TX (United States); and others

With the motivation to address the behavior of the fusion produced alpha particles in a thermonuclear reactor, a theory is developed for predicting the wave saturation levels and particle transport in weakly unstable systems with a discrete number of modes in the presence of energetic particle sources and sinks. Conditions are established for either steady state or bursting nonlinear scenarios when several modes are excited for cases where there is and there is not resonance overlap. Depending on parameters, the particles can undergo benign relaxation, with only a small fraction of the available free energy released to waves and with no global transport, or the particles can experience rapid global transport caused by a substantial conversion of their free energy into wave energy. When the resonance condition of the particle-wave interaction is varied adiabatically, the particles trapped in a wave are found to form phase space holes or clumps that enhance the particle-wave energy exchange. This mechanism, which has been experimentally observed when there is frequency chirping, causes increased saturation levels of instabilities. If resonance sweeping is imposed externally, the particle free energy can even be tapped in stable systems where background dissipation suppresses linear instability. Externally applied resonance sweeping can be important for alpha particle energy channeling, as well as for understanding fishbone and some Alfven wave instability experiments. Near instability threshold, that is when the destabilizing drive just exceeds the background dissipation, a more sophisticated analysis is developed to predict the correct saturation. To leading order, this problem reduces to an integral equation for the wave amplitude with a temporally non local cubic term. This equation has a self-similar solution that blows-up in a finite time.

DOE Contract Number:
FG03-96ER54346
OSTI ID:
489406
Report Number(s):
CONF-960354-; TRN: 97:011550
Resource Relation:
Conference: International Sherwood fusion theory conference, Philadelphia, PA (United States), 18-20 Mar 1996; Other Information: PBD: 1996; Related Information: Is Part Of 1996 international Sherwood fusion theory conference; PB: 244 p.
Country of Publication:
United States
Language:
English