skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Succinyl CoA: 3-oxoacid CoA transferase (SCOT): Human cDNA cloning, human chromosomal mapping to 5p13, and mutation detection in a SCOT-deficient patient

Journal Article · · American Journal of Human Genetics
OSTI ID:478501
; ;  [1]
  1. Gifu Univ. School of Medicine (Japan); and others

Succinyl CoA: 3-oxoacid CoA transferase (SCOT; E.C.2.8.3.5) mediates the rate-determining step of ketolysis in extrahepatic tissues, the esterification of acetoacetate to CoA for use in energy production. Hereditary SCOT deficiency in humans causes episodes of severe ketoacidosis. We obtained human-heart SCOT cDNA clones spanning the entire 1,560-nt coding sequence. Sequence alignment of the human SCOT peptides with other known CoA transferases revealed several conserved regions of potential functional importance. A single {approximately}3.2-kb SCOT mRNA is present in human tissues (heart > leukocytes {much_gt} fibroblasts), but no signal is detectable in the human hepatoma cell line HepG2. We mapped the human SCOT locus (OXCT) to the cytogenetic band 5p13 by in situ hybridization. From fibroblasts of a patient with hereditary SCOT deficiency, we amplified and cloned cDNA fragments containing the entire SCOT coding sequence. We found a homozygous C-to-G transversion at nt 848, which changes the Ser 283 codon to a stop codon. This mutation (S283X) is incompatible with normal enzyme function and represents the first documentation of a pathogenic mutation in SCOT deficiency. 45 refs., 6 figs.

OSTI ID:
478501
Journal Information:
American Journal of Human Genetics, Vol. 59, Issue 3; Other Information: PBD: Sep 1996
Country of Publication:
United States
Language:
English