skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Analysis of radial fin assembly heat transfer with dehumidification

Book ·
OSTI ID:452143
;  [1]
  1. Univ. of South Florida, Tampa, FL (United States). Dept. of Mechanical Engineering

The aim of this paper is the analysis of heat transfer in a radial fin assembly during the process of dehumidification. An individual finned tube geometry is a reasonable representation of heat exchangers used in air conditioning. The condensation process involves both heat and mass transfer and the cooling takes place by the removal of sensible as well as latent heat. The ratio of sensible to total heat is an important quantity that defines the heat transfer process during a dehumidifier operation. A one-dimensional model for heat transfer in the fin and the heat exchanger block is developed to study the effects of condensation on the fin surface. The combined heat and mass transfer process is modeled by incorporating the ratio of sensible to total heat in the formulation. The augmentation of heat transfer due to fin was established by comparing heat transfer rate with and without fins under the same operating conditions. Numerical calculations were carried out to study the effects of relative humidity and dry bulb temperature of the incoming air, and cold fluid temperature inside the coil on the performance of the heat exchanger. Results were compared to those published for rectangular fin under humid condition showed excellent agreement when the present model was used to compute that limiting condition. It was found that the heat transfer rate increased with increment in both dry bulb temperature and relative humidity of the air. The augmentation factor, however, decreased with increment in relative humidity and the dry bulb temperature.

OSTI ID:
452143
Report Number(s):
CONF-960805-; TRN: IM9715%%175
Resource Relation:
Conference: 31. intersociety energy conversion engineering conference, Washington, DC (United States), 9-14 Aug 1996; Other Information: PBD: 1996; Related Information: Is Part Of Proceedings of the 31. intersociety energy conversion engineering conference. Volume 2: Conversion technologies, electro-chemical technologies, stirling engines, thermal management; Chetty, P.R.K.; Jackson, W.D.; Dicks, E.B. [eds.]; PB: 867 p.
Country of Publication:
United States
Language:
English