skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Hydrodynamic instabilities in gas-liquid monolithic reactors

Book ·
OSTI ID:442607
; ; ;  [1]
  1. Delft Univ. of Technology (Netherlands). Faculty of Chemical Technology and Material Science

Liquid holdup and pressure drop were measured during the co-current down flow of air and water through a monolith in the Taylor flow regime. The model presented accounts for the significant, up to three fold, increase in frictional pressure drop that is caused by the presence of gas bubbles. It is accurate to within 20%. In addition, the model presented is used to predict hydrodynamic stability, which is defined as the situation where all channels transport gas and liquid in the direction of mass flow. Essential for stability is a sufficiently good initial liquid distribution, which was achieved with a shower-type distributor. Furthermore, distribution was significantly enhanced by the natural occurrence of a well-mixed foam (aerated liquid) layer on top of the monolith at liquid holdup values above 0.5. The quality of the liquid distribution across the monolith follows directly from on-line, integral liquid holdup measurements. Monoliths have been developed and used extensively for catalytic automobile exhaust conversion, from which they have inherited mechanical and thermal robustness. Today, monoliths provide an interesting alternative to trickle-bed and slurry-column technologies, for solid-catalyzed gas-liquid reactions.

OSTI ID:
442607
Report Number(s):
CONF-961105-; ISBN 0-7918-1521-8; TRN: IM9712%%32
Resource Relation:
Conference: 1996 international mechanical engineering congress and exhibition, Atlanta, GA (United States), 17-22 Nov 1996; Other Information: PBD: 1996; Related Information: Is Part Of Proceedings of the ASME Heat Transfer Division. Volume 3: Experimental studies in multiphase flow; Multiphase flow in porous media; Experimental multiphase flows and numerical simulation of two-phase flows; Fundamental aspects of experimental methods; HTD-Volume 334; Cheung, F.B. [ed.] [Pennsylvania State Univ., University Park, PA (United States)]; Yang, B.W. [ed.] [Columbia Univ., New York, NY (United States)]; Riznic, J.R. [ed.] [Atomic Energy Control Board, Ottawa, Ontario (Canada)]; Seyed-Yagoobi, J.; Hassan, Y.A.; Kihm, K.D. [eds.] [Texas A and M Univ., College Station, TX (United States)]; Kim, J.H. [ed.] [Electric Power Research Inst., Palo Alto, CA (United States)]; Paolucci, S. [ed.] [Univ. of Notre Dame, IN (United States)]; Oosthuizen, P.H. [ed.] [Queen`s Univ., Kingston, Ontario (Canada)]; PB: 438 p.
Country of Publication:
United States
Language:
English