skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Computational and numerical aspects of using the integral equation method for adhesive layer fracture mechanics analysis

Conference ·
OSTI ID:441513
; ; ;  [1]
  1. Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States)

Fracture mechanics analysis of adhesively bonded joints has attracted considerable attention in recent years. A possible approach to the analysis of adhesive layer cracks is to study a brittle adhesive between 2 elastic half-planes representing the substrates. A 2-material 3-region elasticity problem is set up and has to be solved. A modeling technique based on the work of Fleck, Hutchinson, and Suo is used. Two complex potential problems using Muskelishvili`s formulation are set up for the 3-region, 2-material model: (a) a distribution of edge dislocations is employed to simulate the crack and its near field; and (b) a crack-free problem is used to simulate the effect of the external loading applied in the far field. Superposition of the two problems is followed by matching tractions and displacements at the bimaterial boundaries. The Cauchy principal value integral is used to treat the singularities. Imposing the traction-free boundary conditions over the entire crack length yielded a linear system of two integral equations. The parameters of the problem are Dundurs` elastic mismatch coefficients, {alpha} and {beta}, and the ratio c/H representing the geometric position of the crack in the adhesive layer.

OSTI ID:
441513
Report Number(s):
CONF-960214-; TRN: 96:006556-0046
Resource Relation:
Conference: 19. annual meeting of the Adhesion Society, Inc, Myrtle Beach, SC (United States), 18-21 Feb 1996; Other Information: PBD: 1996; Related Information: Is Part Of Proceedings of the 19th annual meeting of the Adhesion Society; Ward, T.C. [ed.]; PB: 567 p.
Country of Publication:
United States
Language:
English