skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Hydrocarbon potential of the Lamu basin of south-east Kenya

Abstract

The Lamu basin occupies the coastal onshore and offshore areas of south-east Kenya. This fault bounded basin formed as a result of the Paleozoic-early Mesozoic phase of rifting that developed at the onset of Gondwana dismemberment. The resultant graben was filled by Karroo (Permian-Early Jurassic) continental siliciclastic sediments. Carbonate deposits associated with the Tethyan sea invasion, dominate the Middle to Late Jurassic basin fill. Cessation of the relative motion between Madagascar and Africa in the Early Cretaceous, heralded passive margin development and deltaic sediment progradation until the Paleogene. Shallow seas transgressed the basin in the Miocene when another carbonate regime prevailed. The basin depositional history is characterized by pulses of transgressive and regressive cycles, bounded by tectonically enhanced unconformities dividing the total sedimentary succession into discrete megasequences. Source rock strata occur within Megasequence III (Paleogene) depositional cycle and were lowered into the oil window in Miocene time, when the coastal parts of the basin experienced the greatest amount of subsidence. The tectono-eustatic pulses of the Tertiary brought about source and reservoir strata into a spatial relationship in which hydrocarbons could be entrapped. A basement high on the continental shelf has potential for Karroo sandstone and Jurassic limestone reservoirs. Halokinesis ofmore » Middle Jurassic salt in Miocene time provides additional prospects in the offshore area. Paleogene deltaic sands occur in rotated listric fault blacks. A Miocene reef Play coincides with an Eocene source rock kitchen.« less

Authors:
; ;  [1]
  1. National Oil Corp. of Kenya, Nairobi (Kenya)
Publication Date:
OSTI Identifier:
425774
Report Number(s):
CONF-960527-
TRN: 96:004994-0415
Resource Type:
Conference
Resource Relation:
Conference: Annual convention of the American Association of Petroleum Geologists, Inc. and the Society for Sedimentary Geology: global exploration and geotechnology, San Diego, CA (United States), 19-22 May 1996; Other Information: PBD: 1996; Related Information: Is Part Of 1996 AAPG annual convention. Volume 5; PB: 231 p.
Country of Publication:
United States
Language:
English
Subject:
02 PETROLEUM; KENYA; SEDIMENTARY BASINS; RIFT ZONES; RESERVOIR ROCK; GEOLOGIC MODELS; PETROLEUM; EXPLORATION; SOURCE ROCKS

Citation Formats

Nyagah, K, Cloeter, J J, and Maende, A. Hydrocarbon potential of the Lamu basin of south-east Kenya. United States: N. p., 1996. Web.
Nyagah, K, Cloeter, J J, & Maende, A. Hydrocarbon potential of the Lamu basin of south-east Kenya. United States.
Nyagah, K, Cloeter, J J, and Maende, A. 1996. "Hydrocarbon potential of the Lamu basin of south-east Kenya". United States.
@article{osti_425774,
title = {Hydrocarbon potential of the Lamu basin of south-east Kenya},
author = {Nyagah, K and Cloeter, J J and Maende, A},
abstractNote = {The Lamu basin occupies the coastal onshore and offshore areas of south-east Kenya. This fault bounded basin formed as a result of the Paleozoic-early Mesozoic phase of rifting that developed at the onset of Gondwana dismemberment. The resultant graben was filled by Karroo (Permian-Early Jurassic) continental siliciclastic sediments. Carbonate deposits associated with the Tethyan sea invasion, dominate the Middle to Late Jurassic basin fill. Cessation of the relative motion between Madagascar and Africa in the Early Cretaceous, heralded passive margin development and deltaic sediment progradation until the Paleogene. Shallow seas transgressed the basin in the Miocene when another carbonate regime prevailed. The basin depositional history is characterized by pulses of transgressive and regressive cycles, bounded by tectonically enhanced unconformities dividing the total sedimentary succession into discrete megasequences. Source rock strata occur within Megasequence III (Paleogene) depositional cycle and were lowered into the oil window in Miocene time, when the coastal parts of the basin experienced the greatest amount of subsidence. The tectono-eustatic pulses of the Tertiary brought about source and reservoir strata into a spatial relationship in which hydrocarbons could be entrapped. A basement high on the continental shelf has potential for Karroo sandstone and Jurassic limestone reservoirs. Halokinesis of Middle Jurassic salt in Miocene time provides additional prospects in the offshore area. Paleogene deltaic sands occur in rotated listric fault blacks. A Miocene reef Play coincides with an Eocene source rock kitchen.},
doi = {},
url = {https://www.osti.gov/biblio/425774}, journal = {},
number = ,
volume = ,
place = {United States},
year = {Tue Dec 31 00:00:00 EST 1996},
month = {Tue Dec 31 00:00:00 EST 1996}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share: