skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Acetate production from whey lactose using co-immobilized cells of homolactic and homoacetic bacteria in a fibrous-bed bioreactor

Journal Article · · Biotechnology and Bioengineering
;  [1]
  1. Ohio State Univ., Columbus, OH (United States). Dept. of Chemical Engineering

Acetate was produced from whey lactose in batch and fed-batch fermentations using co-immobilized cells of Clostridium formicoaceticum and Lactococcus lactis. The cells were immobilized in a spirally wound fibrous sheet packed in a 0.45-L column reactor, with liquid circulated through a 5-L stirred-tank fermentor. Industrial-grade nitrogen sources, including corn steep liquor, casein hydrolysate, and yeast hydrolysate, were studied as inexpensive nutrient supplements to whey permeate and acid whey. Supplementation with either 2.5% (v/v) corn steep liquor or 1.5 g/L casein hydrolysate was adequate for the cocultured fermentation. The overall acetic acid yield from lactose was 0.9 g/g, and the productivity was 0.25 g/(L h). Both lactate and acetate at high concentrations inhibited the homoacetic fermentation. To overcome these inhibitions, fed-batch fermentations were used to keep lactate concentration low and to adapt cells to high-concentration acetate. The final acetate concentration obtained in the fed-batch fermentations were used to keep lactate concentration low and to adapt cells to high-concentration acetate. The final acetate concentration obtained in the fed-batch fermentation was 75 g/L, which was the highest acetate concentration ever produced by C. formicoaceticum. Even at this high acetate concentration, the overall productivity was 0.18 g/(L h) based on the total medium volume and 1.23 g/(L h) based on the fibrous-bed reactor volume. The cells isolated from the fibrous-bed bioreactor at the end of this study were more tolerant to acetic acid than the original culture used to seed the bioreactor, indicating that adaptation and natural selection of acetate-tolerant strains occurred. This cocultured fermentation process could be used to produce a low-cost acetate deicer from whey permeate and acid whey.

OSTI ID:
318874
Journal Information:
Biotechnology and Bioengineering, Vol. 60, Issue 4; Other Information: PBD: 20 Nov 1998
Country of Publication:
United States
Language:
English