skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-D-BRB-02: Combining a Commercial Autoplanning Engine with Database Dose Predictions to Further Improve Plan Quality

Journal Article · · Medical Physics
DOI:https://doi.org/10.1118/1.4955628· OSTI ID:22624380
; ; ; ;  [1]; ; ;  [2];  [3];  [4]
  1. Johns Hopkins University, Baltimore, MD (United States)
  2. John Hopkins Hospital, Baltimore, MD (United States)
  3. Philips, Fitchburg, WI (United States)
  4. Philips India Limited, Bangalore, Karnataka (India)

Purpose: Database dose predictions and a commercial autoplanning engine both improve treatment plan quality in different but complimentary ways. The combination of these planning techniques is hypothesized to further improve plan quality. Methods: Four treatment plans were generated for each of 10 head and neck (HN) and 10 prostate cancer patients, including Plan-A: traditional IMRT optimization using clinically relevant default objectives; Plan-B: traditional IMRT optimization using database dose predictions; Plan-C: autoplanning using default objectives; and Plan-D: autoplanning using database dose predictions. One optimization was used for each planning method. Dose distributions were normalized to 95% of the planning target volume (prostate: 8000 cGy; HN: 7000 cGy). Objectives used in plan optimization and analysis were the larynx (25%, 50%, 90%), left and right parotid glands (50%, 85%), spinal cord (0%, 50%), rectum and bladder (0%, 20%, 50%, 80%), and left and right femoral heads (0%, 70%). Results: All objectives except larynx 25% and 50% resulted in statistically significant differences between plans (Friedman’s χ{sup 2} ≥ 11.2; p ≤ 0.011). Maximum dose to the rectum (Plans A-D: 8328, 8395, 8489, 8537 cGy) and bladder (Plans A-D: 8403, 8448, 8527, 8569 cGy) were significantly increased. All other significant differences reflected a decrease in dose. Plans B-D were significantly different from Plan-A for 3, 17, and 19 objectives, respectively. Plans C-D were also significantly different from Plan-B for 8 and 13 objectives, respectively. In one case (cord 50%), Plan-D provided significantly lower dose than plan C (p = 0.003). Conclusion: Combining database dose predictions with a commercial autoplanning engine resulted in significant plan quality differences for the greatest number of objectives. This translated to plan quality improvements in most cases, although special care may be needed for maximum dose constraints. Further evaluation is warranted in a larger cohort across HN, prostate, and other treatment sites. This work is supported by Philips Radiation Oncology Systems.

OSTI ID:
22624380
Journal Information:
Medical Physics, Vol. 43, Issue 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA); ISSN 0094-2405
Country of Publication:
United States
Language:
English