skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Growth and device processing of hexagonal boron nitride epilayers for thermal neutron and deep ultraviolet detectors

Journal Article · · AIP Advances
DOI:https://doi.org/10.1063/1.4959595· OSTI ID:22611447

Solid-state neutron detectors with high performance are highly sought after for the detection of fissile materials. However, direct-conversion neutron detectors based on semiconductors with a measureable efficiency have not been realized. We report here the first successful demonstration of a direct-conversion semiconductor neutron detector with an overall detection efficiency for thermal neutrons of 4% and a charge collection efficiency as high as 83%. The detector is based on a 2.7 μm thick {sup 10}B-enriched hexagonal boron nitride (h-BN) epitaxial layer. The results represent a significant step towards the realization of practical neutron detectors based on h-BN epilayers. Neutron detectors based on h-BN are expected to possess all the advantages of semiconductor devices including wafer-scale processing, compact size, light weight, and ability to integrate with other functional devices.

OSTI ID:
22611447
Journal Information:
AIP Advances, Vol. 6, Issue 7; Other Information: (c) 2016 Author(s); Country of input: International Atomic Energy Agency (IAEA); ISSN 2158-3226
Country of Publication:
United States
Language:
English