skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Evaluation of hybrid sol-gel incorporated with nanoparticles as nano paint

Journal Article · · AIP Conference Proceedings
DOI:https://doi.org/10.1063/1.4959377· OSTI ID:22608451
;  [1]
  1. Department of Electrical and Computer, University of Missouri, Engineering, Building West, Columbia, Missouri 65211 (United States)

A coating with self-cleaning characteristics has been developed using a TiO{sub 2}/SiO{sub 2} hybrid sol-gel, TiO{sub 2} nanoparticles and organosilicate nanoparticles (OSNP). A patented technology of the hybrid sol-gel and OSNP was combined with TiO{sub 2} nanoparticles to create the surface chemistry for self-cleaning. Two synthesis methods have been developed to prepare TiO{sub 2} nanoparticles (NPs), resulting in the enhancement of local paint by the addition of anatase and rutile TiO{sub 2} phases. The NPs size as determined by Dynamic Light Scattering (DLS) ranges within of (3-4) and (20-42) nm, which was also confirmed by Scanning Electron Microscopy (SEM). The nanoparticles showed surface charge (zeta-potential, ζ) of +35 and +25.62 mV for the methods, respectively, and ζ values of +41.31 and 34.02 mV for anatase and rutile phases, respectively. The NPs were mixed with the coating solution (i.e., hybrid sol-gel and OSNP) in different concentrations and thin films were prepared by spin coating. Self-cleaning tests were performed using Rhodamine B (RhB) as a pollution indicator. The effect of UV-irradiation on the films was also studied. Anatase and rutile incorporated as a mixture with different ratios in local paint and washability as well as a contrast ratio tests were performed. It was found that the addition of TiO{sub 2} NPs in combination with irradiation show a great enhancement of RhB degradation (1%) wt. with a decrease in contact angle and improved washability.

OSTI ID:
22608451
Journal Information:
AIP Conference Proceedings, Vol. 1758, Issue 1; Conference: TMREES2016: Conference on technologies and materials for renewable energy, environment and sustainability, Beirut (Lebanon), 15-18 Apr 2016; Other Information: (c) 2016 Author(s); Country of input: International Atomic Energy Agency (IAEA); ISSN 0094-243X
Country of Publication:
United States
Language:
English