skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Effect of laser intensity on radio frequency emissions from laser induced breakdown of atmospheric air

Journal Article · · Journal of Applied Physics
DOI:https://doi.org/10.1063/1.4953211· OSTI ID:22596762

The studies on the effect of input laser intensity, through the variation of laser focusing geometry, on radio frequency (RF) emissions, over 30–1000 MHz from nanosecond (ns) and picosecond (ps) laser induced breakdown (LIB) of atmospheric air are presented. The RF emissions from the ns and ps LIB were observed to be decreasing and increasing, respectively, when traversed from tight to loose focusing conditions. The angular and radial intensities of the RF emissions from the ns and ps LIB are found to be consistent with sin{sup 2}θ/r{sup 2} dependence of the electric dipole radiation. The normalized RF emissions were observed to vary with incident laser intensity (Iλ{sup 2}), indicating the increase in the induced dipole moment at moderate input laser intensities and the damping of radiation due to higher recombination rate of plasma at higher input laser intensities.

OSTI ID:
22596762
Journal Information:
Journal of Applied Physics, Vol. 119, Issue 21; Other Information: (c) 2016 Author(s); Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-8979
Country of Publication:
United States
Language:
English