skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Interdiffusion and stress development in single-crystalline Pd/Ag bilayers

Journal Article · · Journal of Applied Physics
DOI:https://doi.org/10.1063/1.4945673· OSTI ID:22594601
 [1];  [1];  [1]
  1. Max Planck Institute for Intelligent Systems (formerly Max Planck Institute for Metals Research), Heisenbergstr. 3, 70569 Stuttgart (Germany)

Interdiffusion and stress evolution in single-crystalline Pd/single-crystalline Ag thin films were investigated by Auger electron spectroscopy sputter-depth profiling and in-situ X-ray diffraction, respectively. The concentration-dependent chemical diffusion coefficient, as well as the impurity diffusion coefficient of Ag in Pd could be determined in the low temperature range of 356 °C–455 °C. As a consequence of the similarity of the strong concentration-dependences of the intrinsic diffusion coefficients, the chemical diffusion coefficient varies only over three orders of magnitude over the whole composition range, despite the large difference of six orders of magnitude of the self-diffusion coefficients of Ag in Ag and Pd in Pd. It is shown that the Darken-Manning treatment should be adopted for interpretation of the experimental data; the Nernst-Planck treatment yielded physically unreasonable results. Apart from the development of compressive thermal stress, the development of stress in both sublayers separately could be ascribed to compositional stress (tensile in the Ag sublayer and compressive in the Pd sublayer) and dominant relaxation processes, especially in the Ag sublayer. The effect of these internal stresses on the values determined for the diffusion coefficients is shown to be negligible.

OSTI ID:
22594601
Journal Information:
Journal of Applied Physics, Vol. 119, Issue 14; Other Information: (c) 2016 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-8979
Country of Publication:
United States
Language:
English