skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Enhanced piezoelectricity in plastically deformed nearly amorphous Bi{sub 12}TiO{sub 20}-BaTiO{sub 3} nanocomposites

Journal Article · · Applied Physics Letters
DOI:https://doi.org/10.1063/1.4959248· OSTI ID:22594474
; ; ; ; ; ; ; ;  [1]
  1. School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100 (China)

Bulk Bi{sub 12}TiO{sub 20}-BaTiO{sub 3} (BTO-BT) nanocomposites are fabricated through the high-temperature interfacial reaction between nanometer-sized BaTiO{sub 3} particles and melting Bi{sub 12}TiO{sub 20}. Although the obtained BTO-BT nanocomposites are nearly amorphous and display very weak ferroelectricity, they exhibit relatively strong piezoelectricity without undergoing the electrical poling process. The volume fraction of crystalline Bi{sub 12}TiO{sub 20} is reduced to less than 10%, and the piezoelectric constant d{sub 33} is enhanced to 13 pC/N. Only the presence of the macroscopic polar amorphous phases can explain this unusual thermal stable piezoelectricity. Combining the results from X-ray diffraction, Raman spectroscopy, and thermal annealing, it can be confirmed that the formation of macroscopic polar amorphous phases is closely related to the inhomogeneous plastic deformation of the amorphous Bi{sub 12}TiO{sub 20} during the sintering process. These results highlight the key role of plastically deformed amorphous Bi{sub 12}TiO{sub 20} in the Bi{sub 12}TiO{sub 20}-based polar composites, and the temperature gradient driven coupling between the plastic strain gradient and polarization in amorphous phases is the main poling mechanism for this special type of bulk polar material.

OSTI ID:
22594474
Journal Information:
Applied Physics Letters, Vol. 109, Issue 3; Other Information: (c) 2016 Author(s); Country of input: International Atomic Energy Agency (IAEA); ISSN 0003-6951
Country of Publication:
United States
Language:
English