skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Design of binary SnO{sub 2}-CuO nanocomposite for efficient photocatalytic degradation of malachite green dye

Journal Article · · AIP Conference Proceedings
DOI:https://doi.org/10.1063/1.4945147· OSTI ID:22591066
; ; ; ; ; ;  [1]
  1. Department of Chemistry, National Institute of Technology, Rourkela, Odisha, India, 769008 (India)

Semiconductor mediated photocatalysis has got enormous consideration as it has shown immense potential in addressing the overall energy and environmental issues. To overcome the earlier drawbacks concerning quick charge recombination and limited visible-light absorption of semiconductor photocatalysts, numerous methods have been produced in the past couple of decades and the most broadly utilized one is to develop the photocatalytic heterojunctions. In our work, a series of SnO{sub 2}-CuO nanocomposites of different compositions were synthesized by a combustion method and have been investigated in detail by various characterization techniques, such as wide angle X-ray diffraction (XRD), UV-vis spectroscopy, transmission electron microscopy (TEM), and field emission scanning electron microscopy (FE-SEM). The results revealed that the crystal structure and optical properties of the nanocomposites were almost same for all the compositions. FE-SEM images showed that the shape of SnO{sub 2}-CuO was spherical in nature and the 1: 1 Sn/Cu sample had a well-proportioned morphology. The malachite green dye was used for the photocatalytic studies in a photoreactor and monitored with a UV-visible spectrometer for different composition ratio of metal (Sn: Cu) such as 1:1, 1:2, 2:1, 1:0.5 and 0.5:1. The 1:1 ratio nanocomposite showed excellent photocatalytic degradation of 96 % compared to pure SnO{sub 2} and CuO. The mechanism of degradation and charge separation ability of the nanocomposite are also explored using photocurrent measurement study.

OSTI ID:
22591066
Journal Information:
AIP Conference Proceedings, Vol. 1724, Issue 1; Conference: ETMN-2015: 2. international conference on emerging technologies: Micro to nano 2015, Rajasthan (India), 24-25 Oct 2015; Other Information: (c) 2016 Author(s); Country of input: International Atomic Energy Agency (IAEA); ISSN 0094-243X
Country of Publication:
United States
Language:
English