skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Non-noble metal vanadium phosphites with broad absorption for photocatalytic hydrogen evolution

Journal Article · · Journal of Solid State Chemistry
 [1]; ;  [2]
  1. China-Australia Joint Research Centre for Functional Molecular Materials, School of Chemical & Material Engineering, Jiangnan University, Wuxi 214122 (China)
  2. State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002 (China)

We reported the synthesis and crystal structures of alkali metal and alkali-earth metal phosphite, namely, CsV{sub 2}(H{sub 3}O)(HPO{sub 3}){sub 4} (1), and Ba{sub 3}V{sub 2}(HPO{sub 3}){sub 6} (2). Both compounds were prepared by hydrothermal reactions and feature unique new structures. They both exhibit 3D complicated frameworks based on VO{sub 6} octahedra which are connected by HPO{sub 3} tetrahedra via corner-sharing. Alkali or alkali earth metal cations are filled in the different channels of the frameworks. Topological analysis shows that the framework of CsV{sub 2}(H{sub 3}O) (HPO{sub 3}){sub 4} (1) is a new 3,3,3,4,5-connected network with the Schläfli symbol of {4.6"2}{sub 2}{4"2.6"6.8"2}{6"3}{6"5.8}. The investigations of X-ray photoelectron spectroscopy (XPS) and magnetic measurement on CsV{sub 2}(H{sub 3}O)(HPO{sub 3}){sub 4} suggest a +3 oxidation state of the vanadium ions in compound 1. Photocatalytic performance was evaluated by photocatalytic H{sub 2} evolution and degradation of methylene blue, which shows that both compounds exhibit activity under visible-light irradiation. IR spectrum, UV–vis-NIR spectrum and thermogravimetric analysis (TGA) of compounds were also investigated. - Graphical abstract: Metal vanadium phosphites with broad absorption for photocatalytic hydrogen evolution and the degradation of methylene blue aqueous solution. - Highlights: • Two new vanadium phosphites, CsV{sub 2}(H{sub 3}O)(HPO{sub 3}){sub 4} and Ba{sub 3}V{sub 2}(HPO{sub 3}){sub 6}, are reported. • CsV{sub 2}(H{sub 3}O)(HPO{sub 3}){sub 4} and Ba{sub 3}V{sub 2}(HPO{sub 3}){sub 6} feature complicated 3D framework structures with different channels. • CsV{sub 2}(H{sub 3}O)(HPO{sub 3}){sub 4} and Ba{sub 3}V{sub 2}(HPO{sub 3}){sub 6} exhibit strong and broad absorptions in the visible and Near IR region. • Photocatalytic properties of CsV{sub 2}(H{sub 3}O)(HPO{sub 3}){sub 4} and Ba{sub 3}V{sub 2}(HPO{sub 3}){sub 6} are investigated. • The magnetic measurement of CsV{sub 2}(H{sub 3}O)(HPO{sub 3}){sub 4} was performed in the temperature range of 2–300 K.

OSTI ID:
22584092
Journal Information:
Journal of Solid State Chemistry, Vol. 237; Other Information: Copyright (c) 2016 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0022-4596
Country of Publication:
United States
Language:
English