skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: ZnS/Ni{sub 2}P core/shell composites: Simple hydrothermal synthesis, characterization and its photocatalytic degradation of pyronine B

Journal Article · · Materials Research Bulletin
 [1]; ; ;  [1]
  1. Key Laboratory of Auxiliary Chemistry & Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science & Technology, Xi’an, Shaanxi 710021 (China)

Highlights: • ZnS/Ni{sub 2}P composites have been firstly synthesized via a gentle hydrothermal route. • The composites have been characterized by XRD, SEM and TEM. • ZnS/Ni{sub 2}P showed enhanced photocatalytic degradation activity for pyronine B. • The reason for the enhanced photocatalytic activity has been discussed. - Abstract: ZnS/Ni{sub 2}P core/shell composites were successfully synthesized using a hydrothermal method. The composites have been characterized by XRD, SEM, TEM and the corresponding results showed that the composites were composed of the cubic ZnS microspheres, which were made up of ZnS nanoparticles, and Ni{sub 2}P nanoparticles coated on the surfaces of ZnS microspheres. Compared with ZnS microspheres, ZnS/Ni{sub 2}P core/shell composites showed enhanced photocatalytic degradation activity for pyronine B under UV irradiation. This may be related to the effective separation of photogenerated electron–hole pairs in ZnS/Ni{sub 2}P composites which can greatly reduce the chance of their recombination. Furthermore, superoxide ions and hydroxyl radical can be more easily produced through ZnS/Ni{sub 2}P composites, which is also beneficial for the degradation of pyronine B.

OSTI ID:
22581544
Journal Information:
Materials Research Bulletin, Vol. 77; Other Information: Copyright (c) 2016 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0025-5408
Country of Publication:
United States
Language:
English