skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Synthesis and characterization of samarium-doped ZnS nanoparticles: A novel visible light responsive photocatalyst

Journal Article · · Materials Research Bulletin
 [1]; ; ;  [2];  [3]
  1. School of Mechanical Engineering, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of)
  2. Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz (Iran, Islamic Republic of)
  3. Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996 (United States)

Highlights: • Sm-doped ZnS Nanomaterials were synthesized by hydrothermal method. • The as-prepared compounds were characterized by XRD, TEM, XPS, SEM and UV techniques. • The photocatalytic effect of compounds was determined by Reactive Red 43 degradation. • The degradation of RRed 43 followed the Langmuir–Hinshelwood kinetic model. - Abstract: We prepared pure and samarium-doped ZnS (Sm{sub x}Zn{sub 1−x}S{sub 1+0.5x}) nanoparticles via hydrothermal process at 160 °C for 24 h. XRD analysis shows that the particles were well crystallized and corresponds to a cubic sphalerite phase. SEM and TEM images indicate that the sizes of the particles were in the range of 20–60 nm. The photocatalytic activity of Sm-doped ZnS nanoparticles was evaluated by monitoring the decolorization of Reactive Red 43 in aqueous solution under visible light irradiation. The color removal efficiency of Sm{sub 0.04}Zn{sub 0.96}S and pure ZnS was 95.1% and 28.7% after 120 min of treatment, respectively. Among the different amounts of dopant agent used, 4% Sm-doped ZnS nanoparticles indicated the highest decolorization. We found that the presence of inorganic ions such as Cl{sup −}, CO{sub 3}{sup 2−} and other radical scavengers such as buthanol and isopropyl alcohol reduced the decolorization efficiency.

OSTI ID:
22581517
Journal Information:
Materials Research Bulletin, Vol. 76; Other Information: Copyright (c) 2015 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0025-5408
Country of Publication:
United States
Language:
English