skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Quantum cellular automaton theory of light

Journal Article · · Annals of Physics

We present a quantum theory of light based on the recent derivation of Weyl and Dirac quantum fields from general principles ruling the interactions of a countable set of abstract quantum systems, without using space–time and mechanics (D’Ariano and Perinotti, 2014). In a Planckian interpretation of the discreteness, the usual quantum field theory corresponds to the so-called relativistic regime of small wave-vectors. Within the present framework the photon is a composite particle made of an entangled pair of free Weyl Fermions, and the usual Bosonic statistics is recovered in the low photon density limit, whereas the Maxwell equations describe the relativistic regime. We derive the main phenomenological features of the theory in the ultra-relativistic regime, consisting in a dispersive propagation in vacuum, and in the occurrence of a small longitudinal polarization, along with a saturation effect originated by the Fermionic nature of the photon. We then discuss whether all these effects can be experimentally tested, and observe that only the dispersive effects are accessible to the current technology via observations of gamma-ray bursts.

OSTI ID:
22560320
Journal Information:
Annals of Physics, Vol. 368, Issue Complete; Other Information: Copyright (c) 2016 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0003-4916
Country of Publication:
United States
Language:
English