skip to main content

Title: How random is a random vector?

Over 80 years ago Samuel Wilks proposed that the “generalized variance” of a random vector is the determinant of its covariance matrix. To date, the notion and use of the generalized variance is confined only to very specific niches in statistics. In this paper we establish that the “Wilks standard deviation” –the square root of the generalized variance–is indeed the standard deviation of a random vector. We further establish that the “uncorrelation index” –a derivative of the Wilks standard deviation–is a measure of the overall correlation between the components of a random vector. Both the Wilks standard deviation and the uncorrelation index are, respectively, special cases of two general notions that we introduce: “randomness measures” and “independence indices” of random vectors. In turn, these general notions give rise to “randomness diagrams”—tangible planar visualizations that answer the question: How random is a random vector? The notion of “independence indices” yields a novel measure of correlation for Lévy laws. In general, the concepts and results presented in this paper are applicable to any field of science and engineering with random-vectors empirical data.
Authors:
Publication Date:
OSTI Identifier:
22560278
Resource Type:
Journal Article
Resource Relation:
Journal Name: Annals of Physics; Journal Volume: 363; Journal Issue: Complete; Other Information: Copyright (c) 2015 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; CORRELATIONS; DIAGRAMS; GRAPH THEORY; INDEXES; MATRICES; RANDOMNESS; STATISTICS; VECTORS