skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Estimation of position resolution for DOI-PET detector using diameter 0.2 mm WLS fibers [ANIMMA--2015-IO-x5]

Conference ·
OSTI ID:22531508
 [1]; ; ; ; ; ;  [2]; ; ;  [3]
  1. Graduate School of Science, Chiba University, Chiba (Japan)
  2. Graduate School of Science, Chiba Univ., Chiba (Japan)
  3. C and A Corporation, Miyagi, Tohoku Univ., Miyagi (Japan)

We have been developing a submillimeter resolution and low-cost DOI-PET detector using wavelength shifting fibers (WLSF), scintillating crystal plates and MPPCs (Hamamatsu Photonics). Conventional design of DOI-PET detectors had approximately mm{sup 3} of resolution by using some scintillating blocks with a volume of 1 mm{sup 3}, which detects gamma-ray. They are expensive due to difficulties in processing scintillating crystals and a large number of photo-detectors, and these technologies are likely to reach the limit of the resolution. Development of a lower cost DOI-PET detector with higher resolution is challenging to popularize the PET diagnosis. We propose two type of PET detector. One is a whole body PET system, and the other is a PET system for brain or small animals. Each PET system consists 6 blocks. The former consists of 6 layers of crystal plates with 300 mm x 300 mm x 4 mm. The latter consists of 16 crystal layers, forming 4 x 4 crystal arrays. The size of the crystal plate is 40 mm x 40 mm x 1 mm. Wavelength shifting fiber (WLSF) sheets are attached to above and up and down side of crystal planes. The whole PET system has 8 MPPCs attached on each side. For the brain PET detector, 9 WLSF fibers are attached on the each side. The expected position resolution would be less than 1 mm at the former system. We have performed an experimental performance estimation for the system component using {sup 22}Na radioactive source. We achieved a collection efficiency of 10% using the WLSF sheet and Ce:Gd{sub 3}(Al,Ga){sub 5}O{sub 12} (GAGG) crystals at 511 keV. The linear relationship between reconstruction position and incident position was obtained, and a resolution of 0.7 mm (FWHM) for x-axis of DOI by the WLSF readout was achieved. (authors)

Research Organization:
Institute of Electrical and Electronics Engineers - IEEE, 3 Park Avenue, 17th Floor, New York, N.Y. 10016-5997 (United States)
OSTI ID:
22531508
Report Number(s):
ANIMMA-2015-IO-x5; TRN: US16V0520102449
Resource Relation:
Conference: ANIMMA 2015: 4. International Conference on Advancements in Nuclear Instrumentation Measurement Methods and their Applications, Lisboa (Portugal), 20-24 Apr 2015; Other Information: Country of input: France; 3 Refs.
Country of Publication:
United States
Language:
English