skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Kinetic parameters of the GUINEVERE reference configuration in VENUS-F reactor obtained from a pile noise experiment using Rossi and Feynman methods

Conference ·
; ; ;  [1];  [2];  [3]; ;  [4];  [5]
  1. CEA, DEN, DER/SPEx, Cadarache, F-13108 St Paul Lez Durance (France)
  2. LPC Caen, ENSICAEN, Universite de Caen, CNRS/IN2P3, 6 Bd. Marechal Juin 14050 Caen cedex (France)
  3. ENEA, UTFISST-REANUC, C.R. Casaccia, S.P.040 via Anguillarese 301, 00123 S. Maria Di Galeria, Roma (Italy)
  4. SCK.CEN, Belgian Nuclear Research Centre, Boeretang 200, BE-2400, Mol (Belgium)
  5. LPSC, CNRS, IN2P3/UJF/INPG, 53 Avenue des Martyrs, 38026 Grenoble cedex (France)

A pile noise measurement campaign has been conducted by the CEA in the VENUS-F reactor (SCK-CEN, Mol Belgium) in April 2011 in the reference critical configuration of the GUINEVERE experimental program. The experimental setup made it possible to estimate the core kinetic parameters: the prompt neutron decay constant, the delayed neutron fraction and the generation time. A precise assessment of these constants is of prime importance. In particular, the effective delayed neutron fraction is used to normalize and compare calculated reactivities of different subcritical configurations, obtained by modifying either the core layout or the control rods position, with experimental ones deduced from the analysis of measurements. This paper presents results obtained with a CEA-developed time stamping acquisition system. Data were analyzed using Rossi-α and Feynman-α methods. Results were normalized to reactor power using a calibrated fission chamber with a deposit of Np-237. Calculated factors were necessary to the analysis: the Diven factor was computed by the ENEA (Italy) and the power calibration factor by the CNRS/IN2P3/LPC Caen. Results deduced with both methods are consistent with respect to calculated quantities. Recommended values are given by the Rossi-α estimator, that was found to be the most robust. The neutron generation time was found equal to 0.438 ± 0.009 μs and the effective delayed neutron fraction is 765 ± 8 pcm. Discrepancies with the calculated value (722 pcm, calculation from ENEA) are satisfactory: -5.6% for the Rossi-α estimate and -2.7% for the Feynman-α estimate. (authors)

Research Organization:
Institute of Electrical and Electronics Engineers (IEEE), New York, NY (United States)
OSTI ID:
22531360
Report Number(s):
ANIMMA-2015-IO-312; TRN: US16V0349102301
Resource Relation:
Conference: ANIMMA 2015: 4. International Conference on Advancements in Nuclear Instrumentation Measurement Methods and their Applications, Lisboa (Portugal), 20-24 Apr 2015; Other Information: Country of input: France; 10 Refs.
Country of Publication:
United States
Language:
English