skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Robustness of cosmic neutrino background detection in the cosmic microwave background

Journal Article · · Journal of Cosmology and Astroparticle Physics
 [1]; ; ;  [2]; ;  [3];  [4];  [5]; ;  [6];  [7];  [8]
  1. Institut de Théorie des Phénomènes Physiques, École Polytechnique Fédérale de Lausanne, CH-1015, Lausanne (Switzerland)
  2. Institut de Ciències del Cosmos, Universitat de Barcelona, IEEC-UB, Martí i Franquès 1, E08028 Barcelona (Spain)
  3. Dept. d'Astronomia i Meteorologia, Institut de Ciències del Cosmos, Universitat de Barcelona, IEEC-UB, Martí i Franquès 1, E08028 Barcelona (Spain)
  4. CERN, Theory Division, CH-1211 Geneva 23 (Switzerland)
  5. Departamento de Física Teórica, Universidad Autónoma de Madrid and Instituto de Física Teórica UAM/CSIC, Calle Nicolás Cabrera 13-15, Cantoblanco, E-28049 Madrid (Spain)
  6. Instituto de Astrofísica de Canarias (IAC), C/Vía Láctea s/n, E-38200, La Laguna, Tenerife (Spain)
  7. LAPTh, Université de Savoie, CNRS, B.P.110, Annecy-le-Vieux F-74941 (France)
  8. Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Burnaby Road, Portsmouth PO1 3FX (United Kingdom)

The existence of a cosmic neutrino background can be probed indirectly by CMB experiments, not only by measuring the background density of radiation in the universe, but also by searching for the typical signatures of the fluctuations of free-streaming species in the temperature and polarisation power spectrum. Previous studies have already proposed a rather generic parametrisation of these fluctuations, that could help to discriminate between the signature of ordinary free-streaming neutrinos, or of more exotic dark radiation models. Current data are compatible with standard values of these parameters, which seems to bring further evidence for the existence of a cosmic neutrino background. In this work, we investigate the robustness of this conclusion under various assumptions. We generalise the definition of an effective sound speed and viscosity speed to the case of massive neutrinos or other dark radiation components experiencing a non-relativistic transition. We show that current bounds on these effective parameters do not vary significantly when considering an arbitrary value of the particle mass, or extended cosmological models with a free effective neutrino number, dynamical dark energy or a running of the primordial spectrum tilt. We conclude that it is possible to make a robust statement about the detection of the cosmic neutrino background by CMB experiments.

OSTI ID:
22525932
Journal Information:
Journal of Cosmology and Astroparticle Physics, Vol. 2015, Issue 03; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 1475-7516
Country of Publication:
United States
Language:
English