skip to main content

Title: Dark matter directional detection in non-relativistic effective theories

We extend the formalism of dark matter directional detection to arbitrary one-body dark matter-nucleon interactions. The new theoretical framework generalizes the one currently used, which is based on 2 types of dark matter-nucleon interaction only. It includes 14 dark matter-nucleon interaction operators, 8 isotope-dependent nuclear response functions, and the Radon transform of the first 2 moments of the dark matter velocity distribution. We calculate the recoil energy spectra at dark matter directional detectors made of CF{sub 4}, CS{sub 2} and {sup 3}He for the 14 dark matter-nucleon interactions, using nuclear response functions recently obtained through numerical nuclear structure calculations. We highlight the new features of the proposed theoretical framework, and present our results for a spherical dark matter halo and for a stream of dark matter particles. This study lays the foundations for model independent analyses of dark matter directional detection experiments.
Authors:
 [1]
  1. Institut für Theoretische Physik, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany)
Publication Date:
OSTI Identifier:
22525721
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Cosmology and Astroparticle Physics; Journal Volume: 2015; Journal Issue: 07; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; ASTROPHYSICS; CARBON SULFIDES; CARBON TETRAFLUORIDE; DETECTION; ENERGY SPECTRA; FIELD OPERATORS; HELIUM 3; NONLUMINOUS MATTER; NUCLEAR STRUCTURE; RECOILS; RELATIVISTIC RANGE; RESPONSE FUNCTIONS; SPHERICAL CONFIGURATION; STREAMS; TRANSFORMATIONS; VELOCITY