skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: THE EFFECTS OF SELF-SHADOWING BY A PUFFED-UP INNER RIM IN SCATTERED LIGHT IMAGES OF PROTOPLANETARY DISKS

Journal Article · · Astrophysical Journal
 [1]
  1. Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States)

We explore whether protoplanetary disks with self-shadowing from puffed-up inner rims exhibit observable features in scattered light images. We use both self-consistent hydrostatic equilibrium calculations and parameterized models to produce the vertically puffed-up inner rims. We find that, in general, the transition between the shadowed and flared regions occurs in a smooth manner over a broad radius range, and no sudden jump exists at the outer edge of the shadow in either the disk temperature or density structures. As a result, a puffed-up rim cannot create sharp ring/arc/spiral-arm-like features in the outer disk as have been detected in recent direct near-infrared imaging of disks. On the other hand, if the puffed-up rim has a sharp edge in the vertical direction, the shadowing effect can produce a distinct three-stage broken power law in the radial intensity profile of the scattered light, with two steep surface brightness radial profiles in the inner and outer disk joined by a shallow transition region around the shadow edge. These types of scattered light profiles may have already been observed, such as in the recent Subaru direct imaging of the TW Hydrae system.

OSTI ID:
22525535
Journal Information:
Astrophysical Journal, Vol. 810, Issue 1; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 0004-637X
Country of Publication:
United States
Language:
English