skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A DEEP STUDY OF THE DWARF SATELLITES ANDROMEDA XXVIII AND ANDROMEDA XXIX

Journal Article · · Astrophysical Journal
;  [1];  [2]; ;  [3]
  1. Department of Astronomy, University of Michigan, 1085 S. University Ave., Ann Arbor, MI 48109 (United States)
  2. Observatoire astronomique de Strasbourg, Université de Strasbourg, CNRS, UMR 7550, 11 rue de l’Université, F-67000 Strasbourg (France)
  3. Astronomy Department, Yale University, P.O. Box 208101, New Haven, CT 06510 (United States)

We present the results of a deep study of the isolated dwarf galaxies Andromeda XXVIII and Andromeda XXIX with Gemini/GMOS and Keck/DEIMOS. Both galaxies are shown to host old, metal-poor stellar populations with no detectable recent star formation, conclusively identifying both of them as dwarf spheroidal galaxies (dSphs). And XXVIII exhibits a complex horizontal branch morphology, which is suggestive of metallicity enrichment and thus an extended period of star formation in the past. Decomposing the horizontal branch into blue (metal-poor, assumed to be older) and red (relatively more metal-rich, assumed to be younger) populations shows that the metal-rich are also more spatially concentrated in the center of the galaxy. We use spectroscopic measurements of the calcium triplet, combined with the improved precision of the Gemini photometry, to measure the metallicity of the galaxies, confirming the metallicity spread and showing that they both lie on the luminosity–metallicity relation for dwarf satellites. Taken together, the galaxies exhibit largely typical properties for dSphs despite their significant distances from M31. These dwarfs thus place particularly significant constraints on models of dSph formation involving environmental processes such as tidal or ram pressure stripping. Such models must be able to completely transform the two galaxies into dSphs in no more than two pericentric passages around M31, while maintaining a significant stellar population gradient. Reproducing these features is a prime requirement for models of dSph formation to demonstrate not just the plausibility of environmental transformation but the capability of accurately recreating real dSphs.

OSTI ID:
22522260
Journal Information:
Astrophysical Journal, Vol. 806, Issue 2; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 0004-637X
Country of Publication:
United States
Language:
English