skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: INTERPRETING THE GLOBAL 21-cm SIGNAL FROM HIGH REDSHIFTS. II. PARAMETER ESTIMATION FOR MODELS OF GALAXY FORMATION

Journal Article · · Astrophysical Journal
;  [1];  [2]
  1. Center for Astrophysics and Space Astronomy and Department of Astrophysical and Planetary Science, University of Colorado, Campus Box 389, Boulder, CO 80309 (United States)
  2. Department of Physics and Astronomy, University College London, London WC1E 6BT (United Kingdom)

Following our previous work, which related generic features in the sky-averaged (global) 21-cm signal to properties of the intergalactic medium, we now investigate the prospects for constraining a simple galaxy formation model with current and near-future experiments. Markov-Chain Monte Carlo fits to our synthetic data set, which includes a realistic galactic foreground, a plausible model for the signal, and noise consistent with 100 hr of integration by an ideal instrument, suggest that a simple four-parameter model that links the production rate of Lyα, Lyman-continuum, and X-ray photons to the growth rate of dark matter halos can be well-constrained (to ∼0.1 dex in each dimension) so long as all three spectral features expected to occur between 40 ≲ ν/MHz ≲ 120 are detected. Several important conclusions follow naturally from this basic numerical result, namely that measurements of the global 21-cm signal can in principle (i) identify the characteristic halo mass threshold for star formation at all redshifts z ≳ 15, (ii) extend z ≲ 4 upper limits on the normalization of the X-ray luminosity star formation rate (L{sub X}–SFR) relation out to z ∼ 20, and (iii) provide joint constraints on stellar spectra and the escape fraction of ionizing radiation at z ∼ 12. Though our approach is general, the importance of a broadband measurement renders our findings most relevant to the proposed Dark Ages Radio Explorer, which will have a clean view of the global 21-cm signal from ∼40 to 120 MHz from its vantage point above the radio-quiet, ionosphere-free lunar far-side.

OSTI ID:
22521977
Journal Information:
Astrophysical Journal, Vol. 813, Issue 1; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 0004-637X
Country of Publication:
United States
Language:
English