skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: MULTITHERMAL REPRESENTATION OF THE KAPPA-DISTRIBUTION OF SOLAR FLARE ELECTRONS AND APPLICATION TO SIMULTANEOUS X-RAY AND EUV OBSERVATIONS

Journal Article · · Astrophysical Journal
 [1];
  1. Institute of 4D Technologies, School of Engineering, University of Applied Sciences and Arts Northwestern Switzerland, CH-5210 Windisch (Switzerland)

Acceleration of particles and plasma heating is one of the fundamental problems in solar flare physics. An accurate determination of the spectrum of flare-energized electrons over a broad energy range is crucial for our understanding of aspects such as the acceleration mechanism and the total flare energy. Recent years have seen a growing interest in the kappa-distribution as a representation of the total spectrum of flare-accelerated electrons. In this work we present the kappa-distribution as a differential emission measure. This allows for inferring the electron distribution from X-ray observations and EUV observations by simultaneously fitting the proposed function to RHESSI and SDO/AIA data. This yields the spatially integrated electron spectra of a coronal source from less than 0.1 keV up to several tens of keV. The method is applied to a single-loop GOES C4.1 flare. The results show that the total energy can only be determined accurately by combining RHESSI and AIA observations. Simultaneously fitting the proposed representation of the kappa-distribution reduces the electron number density in the analyzed flare by a factor of ∼30 and the total flare energy by a factor of ∼5 compared with the commonly used fitting of RHESSI spectra. The spatially integrated electron spectrum of the investigated flare between 0.043 and 24 keV is consistent with the combination of a low-temperature (∼2 MK) component and a hot (∼11 MK) kappa-like component with spectral index 4, reminiscent of solar wind distributions.

OSTI ID:
22521775
Journal Information:
Astrophysical Journal, Vol. 815, Issue 1; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 0004-637X
Country of Publication:
United States
Language:
English