skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SPECTRUM AND ANISOTROPY OF TURBULENCE FROM MULTI-FREQUENCY MEASUREMENT OF SYNCHROTRON POLARIZATION

Journal Article · · Astrophysical Journal
 [1];  [2]
  1. Department of Astronomy, University of Wisconsin, Madison, WI (United States)
  2. Physics Department, University of Alberta, Edmonton (Canada)

We consider turbulent synchrotron-emitting media that also exhibit Faraday rotation and provide a statistical description of synchrotron polarization fluctuations. In particular, we consider these fluctuations as a function of the spatial separation of the direction of the measurements and as a function of wavelength for the same line of sight. On the basis of our general analytical approach, we introduce several measures that can be used to obtain the spectral slopes and correlation scales of both the underlying magnetic turbulence responsible for emission and the spectrum of the Faraday rotation fluctuations. We show the synergetic nature of these measures and discuss how the study can be performed using sparsely sampled interferometric data. We also discuss how additional characteristics of turbulence can be obtained, including the turbulence anisotropy and the three-dimensional direction of the mean magnetic field. In addition, we consider the cases when the synchrotron emission and Faraday rotation regions are spatially separated. Appealing to our earlier study, we explain that our new results are applicable to a wide range of spectral indexes of relativistic electrons responsible for synchrotron emission. We expect wide application of our techniques, both with existing synchrotron data sets and with big forthcoming data sets from LOFAR and SKA.

OSTI ID:
22521531
Journal Information:
Astrophysical Journal, Vol. 818, Issue 2; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 0004-637X
Country of Publication:
United States
Language:
English