skip to main content

Title: STAR FORMATION HISTORY OF THE MILKY WAY HALO TRACED BY THE OOSTERHOFF DICHOTOMY AMONG GLOBULAR CLUSTERS

In our recent investigation of the Oosterhoff dichotomy in the multiple population paradigm, we have suggested that the RR Lyrae variables in the globular clusters (GCs) of Oosterhoff groups I, II, and III are produced mostly by first, second, and third generation stars (G1, G2, and G3), respectively. Here we show, for the first time, that the observed dichotomies in the inner and outer halo GCs can be naturally reproduced when these models are extended to all metallicity regimes, while maintaining reasonable agreements in the horizontal-branch type versus [Fe/H] correlations. In order to achieve this, however, specific star formation histories are required for the inner and outer halos. In the inner halo GCs, the star formation commenced and ceased earlier with a relatively short formation timescale between the subpopulations (∼0.5 Gyr), while in the outer halo, the formation of G1 was delayed by ∼0.8 Gyr with a more extended timescale between G1 and G2 (∼1.4 Gyr). This is consistent with the dual origin of the Milky Way halo. Despite the difference in detail, our models show that the Oosterhoff period groups observed in both outer and inner halo GCs are all manifestations of the “population-shift” effect within the instability strip,more » for which the origin can be traced back to the two or three discrete episodes of star formation in GCs.« less
Authors:
;  [1]
  1. Center for Galaxy Evolution Research and Department of Astronomy, Yonsei University, Seoul 120-749 (Korea, Republic of)
Publication Date:
OSTI Identifier:
22520186
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astrophysical Journal, Supplement Series; Journal Volume: 218; Journal Issue: 2; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; CORRELATIONS; HYDROGEN; IRON; METALLICITY; MILKY WAY; STAR CLUSTERS; STAR MODELS; VARIABLE STARS